Entanglement renormalization for quantum fields with boundaries and defects

نویسندگان

چکیده

The continuous Multiscale Entanglement Renormalization Ansatz (cMERA) [Haegeman et al., Phys. Rev. Lett. 110, 100402 (2013)] gives a variational wavefunctional for ground states of quantum field theoretic Hamiltonians. A cMERA is defined as the result applying to reference unentangled state unitary evolution generated by quasilocal operator, entangler. This makes extension formalism case where boundaries and defects are present nontrivial. Here we show how this generalization works, using 1+1d free boson proof-of-principle example, restricting ourselves conformal defects. In our prescription, presence boundary or defect induces modification entangler localized only its vicinity, in analogy with so-called principle minimal updates lattice tensor network MERA.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Information geometry of entanglement renormalization for free quantum fields

We provide an explicit connection between the differential generation of entanglement entropy in a tensor network representation of the ground states of two field theories, and a geometric description of these states based on the Fisher information metric. We show how the geometrical description remains invariant despite there is an irreducible gauge freedom in the definition of the tensor netw...

متن کامل

Voltage-Controlled Entanglement between Quantum- Dot Molecule and its Spontaneous Emission Fields via Quantum Entropy

The time evolution of the quantum entropy in a coherently driven threelevel quantum dot (QD) molecule is investigated. The entanglement of quantum dot molecule and its spontaneous emission field is coherently controlled by the gat voltage and the intensity of applied field. It is shown that the degree of entanglement between a three-level quantum dot molecule and its spontaneous emission fields...

متن کامل

Algorithms for entanglement renormalization: boundaries, impurities and interfaces

We propose algorithms, based on the multi-scale entanglement renormalization ansatz, to obtain the ground state of quantum critical systems in the presence of boundaries, impurities, or interfaces. By exploiting the theory of minimal updates [Ref. 1: G. Evenbly and G. Vidal, arXiv:1307.0831], the ground state is completely characterized in terms of a number of variational parameters that is ind...

متن کامل

Entanglement renormalization.

We propose a real-space renormalization group (RG) transformation for quantum systems on a D-dimensional lattice. The transformation partially disentangles a block of sites before coarse-graining it into an effective site. Numerical simulations with the ground state of a 1D lattice at criticality show that the resulting coarse-grained sites require a Hilbert space dimension that does not grow w...

متن کامل

Controlling Entanglement Generation in External Quantum Fields

Two, non-interacting two-level atoms immersed in a common bath can become mutually entangled when evolving with a Markovian, completely positive dynamics. For an environment made of external quantum fields, this phenomenon can be studied in detail: one finds that entanglement production can be controlled by varying the bath temperature and the distance between the atoms. Remarkably, in certain ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical Review B

سال: 2021

ISSN: ['1098-0121', '1550-235X', '1538-4489']

DOI: https://doi.org/10.1103/physrevb.104.125131